Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes indirect effects, conditional effects, and conditional indirect effects in a structural equation model or path model after model fitting, with no need to define any user parameters or label any paths in the model syntax, using the approach presented in Cheung and Cheung (2024) <doi:10.3758/s13428-023-02224-z>. Can also form bootstrap confidence intervals by doing bootstrapping only once and reusing the bootstrap estimates in all subsequent computations. Supports bootstrap confidence intervals for standardized (partially or completely) indirect effects, conditional effects, and conditional indirect effects as described in Cheung (2009) <doi:10.3758/BRM.41.2.425> and Cheung, Cheung, Lau, Hui, and Vong (2022) <doi:10.1037/hea0001188>. Model fitting can be done by structural equation modeling using lavaan() or regression using lm().
Computes densities, probabilities, and random deviates of the Matrix Normal (Pocuca et al. (2019) <doi:10.48550/arXiv.1910.02859>). Also includes simple but useful matrix functions. See the vignette for more information.
You can use the set of wrappers for analytical schemata to reduce the effort in writing machine-readable data. The set of all-in-one wrappers will cover widely used functions from data analysis packages.
This package provides samplers for various matrix variate distributions: Wishart, inverse-Wishart, normal, t, inverted-t, Beta type I, Beta type II, Gamma, confluent hypergeometric. Allows to simulate the noncentral Wishart distribution without the integer restriction on the degrees of freedom.
Computes Monte Carlo standard errors for summaries of Monte Carlo output. Summaries and their standard errors are based on columns of Monte Carlo simulation output. Dennis D. Boos and Jason A. Osborne (2015) <doi:10.1111/insr.12087>.
Allows to perform the multivariate version of the Diebold-Mariano test for equal predictive ability of multiple forecast comparison. Main reference: Mariano, R.S., Preve, D. (2012) <doi:10.1016/j.jeconom.2012.01.014>.
This package provides functions for the creation, evaluation and test of decision models based in Multi Attribute Utility Theory (MAUT). Can process and evaluate local risk aversion utilities for a set of indexes, compute utilities and weights for the whole decision tree defining the decision model and simulate weights employing Dirichlet distributions under addition constraints in weights.
For the purposes of teaching, it is often desirable to show examples of working with messy data and how to clean it. This R package creates messy data from clean, tidy data frames so that students have a clean example to work towards.
Learning, manipulation and evaluation of mixtures of truncated basis functions (MoTBFs), which include mixtures of polynomials (MOPs) and mixtures of truncated exponentials (MTEs). MoTBFs are a flexible framework for modelling hybrid Bayesian networks (I. Pérez-Bernabé, A. Salmerón, H. Langseth (2015) <doi:10.1007/978-3-319-20807-7_36>; H. Langseth, T.D. Nielsen, I. Pérez-Bernabé, A. Salmerón (2014) <doi:10.1016/j.ijar.2013.09.012>; I. Pérez-Bernabé, A. Fernández, R. Rumà , A. Salmerón (2016) <doi:10.1007/s10618-015-0429-7>). The package provides functionality for learning univariate, multivariate and conditional densities, with the possibility of incorporating prior knowledge. Structural learning of hybrid Bayesian networks is also provided. A set of useful tools is provided, including plotting, printing and likelihood evaluation. This package makes use of S3 objects, with two new classes called motbf and jointmotbf'.
This package provides a collection of functions for converting and visualization the free induction decay of mono dimensional nuclear magnetic resonance (NMR) spectra into an audio file. It facilitates the conversion of Bruker datasets in files WAV. The sound of NMR signals could provide an alternative to the current representation of the individual metabolic fingerprint and supply equally significant information. The package includes also NMR spectra of the urine samples provided by four healthy donors. Based on Cacciatore S, Saccenti E, Piccioli M. Hypothesis: the sound of the individual metabolic phenotype? Acoustic detection of NMR experiments. OMICS. 2015;19(3):147-56. <doi:10.1089/omi.2014.0131>.
This is a cross-platform linear model to SQL compiler. It generates SQL from linear and generalized linear models. Its interface consists of a single function, modelc(), which takes the output of lm() or glm() functions (or any object which has the same signature) and outputs a SQL character vector representing the predictions on the scale of the response variable as described in Dunn & Smith (2018) <doi:10.1007/978-1-4419-0118-7> and originating in Nelder & Wedderburn (1972) <doi:10.2307/2344614>. The resultant SQL can be included in a SELECT statement and returns output similar to that of the glm.predict() or lm.predict() predictions, assuming numeric types are represented in the database using sufficient precision. Currently log and identity link functions are supported.
Inference of Multiscale graphical models with neighborhood selection approach. The method is based on solving a convex optimization problem combining a Lasso and fused-group Lasso penalties. This allows to infer simultaneously a conditional independence graph and a clustering partition. The optimization is based on the Continuation with Nesterov smoothing in a Shrinkage-Thresholding Algorithm solver (Hadj-Selem et al. 2018) <doi:10.1109/TMI.2018.2829802> implemented in python.
Simplifies Brazilian names phonetically using a custom metaphoneBR algorithm that preserves ending vowels. Useful for name matching processing preserving gender information carried generally by ending vowels in Portuguese. Mation (2025) <doi:10.6082/uchicago.15104>.
This package provides ensemble samplers for affine-invariant Monte Carlo Markov Chain, which allow a faster convergence for badly scaled estimation problems. Two samplers are proposed: the differential.evolution sampler from ter Braak and Vrugt (2008) <doi:10.1007/s11222-008-9104-9> and the stretch sampler from Goodman and Weare (2010) <doi:10.2140/camcos.2010.5.65>.
This package provides a flexible general-purpose toolbox for implementing Rescorla-Wagner models in multi-armed bandit tasks. As the successor and functional extension of the binaryRL package, multiRL modularizes the Markov Decision Process (MDP) into six core components. This framework enables users to construct custom models via intuitive if-else syntax and define latent learning rules for agents. For parameter estimation, it provides both likelihood-based inference (MLE and MAP) and simulation-based inference (ABC and RNN), with full support for parallel processing across subjects. The workflow is highly standardized, featuring four main functions that strictly follow the four-step protocol (and ten rules) proposed by Wilson & Collins (2019) <doi:10.7554/eLife.49547>. Beyond the three built-in models (TD, RSTD, and Utility), users can easily derive new variants by declaring which variables are treated as free parameters.
This package provides tools specifically designed for analyzing longitudinal microbiome data. This tool integrates seven functional modules, providing a systematic framework for microbiome time-series analysis. For more details on inferences involving interspecies interactions see Fisher (2014) <doi:10.1371/journal.pone.0102451>. Details on this package are also described in an unpublished manuscript.
Perform library searches against electron ionization mass spectral databases using either the API provided by MS Search software (<https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:nistlibs>) or custom implementations of the Identity and Similarity algorithms.
An open-source implementation of latent variable methods and multivariate modeling tools. The focus is on exploratory analyses using dimensionality reduction methods including low dimensional embedding, classical multivariate statistical tools, and tools for enhanced interpretation of machine learning methods (i.e. intelligible models to provide important information for end-users). Target domains include extension to dedicated applications e.g. for manufacturing process modeling, spectroscopic analyses, and data mining.
With the provision of several tools and templates the MOSAIC project (DFG-Grant Number HO 1937/2-1) supports the implementation of a central data management in epidemiological research projects. The MOQA package enables epidemiologists with none or low experience in R to generate basic data quality reports for a wide range of application scenarios. See <https://mosaic-greifswald.de/> for more information. Please read and cite the corresponding open access publication (using the former package-name) in METHODS OF INFORMATION IN MEDICINE by M. Bialke, H. Rau, T. Schwaneberg, R. Walk, T. Bahls and W. Hoffmann (2017) <doi:10.3414/ME16-01-0123>. <https://methods.schattauer.de/en/contents/most-recent-articles/issue/2483/issue/special/manuscript/27573/show.html>.
This package implements a model-based clustering method for categorical life-course sequences relying on mixtures of exponential-distance models introduced by Murphy et al. (2021) <doi:10.1111/rssa.12712>. A range of flexible precision parameter settings corresponding to weighted generalisations of the Hamming distance metric are considered, along with the potential inclusion of a noise component. Gating covariates can be supplied in order to relate sequences to baseline characteristics and sampling weights are also accommodated. The models are fitted using the EM algorithm and tools for visualising the results are also provided.
This package provides a function for measuring the difference between two independent or non-independent empirical distributions and returning a significance level of the difference.
Compute the average of a sequence of random vectors in a moving expanding window using a fixed amount of memory.
Mixed model-based genome-wide association analysis that accommodate population membership information, variance adjustment, and correlated responses.
Dealing with neutrosophic data in single valued form using score, accuracy and certainty functions to calculate ranks of Single Valued Neutrosophic Set (SVNS), also to calculate the Mann-Whitney test, and making a post-hoc test after rejecting the null hypothesis using the Neutrosophic Statistics Kruskal-Wallis test. For more information see Miari, Mahmoud; Anan, Mohamad Taher; Zeina, Mohamed Bisher(2022) <https://digitalrepository.unm.edu/nss_journal/vol51/iss1/60/>.