_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
python-track-linearization 2.4.0
Propagated dependencies: python-dask@2024.12.1 python-matplotlib@3.8.2 python-networkx@3.4.2 python-numpy@1.26.4 python-pandas@2.2.3 python-scipy@1.12.0
Channel: guix-science
Location: guix-science/packages/electrophysiology.scm (guix-science packages electrophysiology)
Home page: https://github.com/LorenFrankLab/track_linearization
Licenses: Expat
Build system: pyproject
Synopsis: Linearize 2D position to 1D using Hidden Markov Models
Description:

track_linearization is a Python package for mapping animal movement on complex track environments (mazes, figure-8s, T-mazes) into simplified 1D representations. It uses Hidden Markov Models to handle noisy position data and provides powerful tools for analyzing spatial behavior in neuroscience experiments.

Total results: 1