_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-aldex2 1.38.0
Propagated dependencies: r-biocparallel@1.40.0 r-directlabels@2024.1.21 r-genomicranges@1.58.0 r-iranges@2.40.0 r-lattice@0.22-6 r-latticeextra@0.6-30 r-multtest@2.62.0 r-rfast@2.1.0 r-s4vectors@0.44.0 r-summarizedexperiment@1.36.0 r-zcompositions@1.5.0-4
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://github.com/ggloor/ALDEx_bioc
Licenses: AGPL 3+ GPL 2+ GPL 3
Synopsis: Analysis of differential abundance taking sample variation into account
Description:

This package provides a differential abundance analysis for the comparison of two or more conditions. Useful for analyzing data from standard RNA-seq or meta-RNA-seq assays as well as selected and unselected values from in-vitro sequence selections. Uses a Dirichlet-multinomial model to infer abundance from counts, optimized for three or more experimental replicates. The method infers biological and sampling variation to calculate the expected false discovery rate, given the variation, based on a Wilcoxon Rank Sum test and Welch's t-test, a Kruskal-Wallis test, a generalized linear model, or a correlation test. All tests report p-values and Benjamini-Hochberg corrected p-values. ALDEx2 also calculates expected standardized effect sizes for paired or unpaired study designs.

Total results: 1