_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-ball 1.3.13
Propagated dependencies: r-survival@3.8-3 r-mvtnorm@1.3-3 r-gam@1.22-5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://mamba413.github.io/Ball/
Licenses: GPL 3
Synopsis: Statistical Inference and Sure Independence Screening via Ball Statistics
Description:

Hypothesis tests and sure independence screening (SIS) procedure based on ball statistics, including ball divergence <doi:10.1214/17-AOS1579>, ball covariance <doi:10.1080/01621459.2018.1543600>, and ball correlation <doi:10.1080/01621459.2018.1462709>, are developed to analyze complex data in metric spaces, e.g, shape, directional, compositional and symmetric positive definite matrix data. The ball divergence and ball covariance based distribution-free tests are implemented to detecting distribution difference and association in metric spaces <doi:10.18637/jss.v097.i06>. Furthermore, several generic non-parametric feature selection procedures based on ball correlation, BCor-SIS and all of its variants, are implemented to tackle the challenge in the context of ultra high dimensional data. A fast implementation for large-scale multiple K-sample testing with ball divergence <doi: 10.1002/gepi.22423> is supported, which is particularly helpful for genome-wide association study.

Total results: 4