_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-bama 1.3.0
Propagated dependencies: r-rcppdist@0.1.1 r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/umich-cphds/bama
Licenses: GPL 3
Synopsis: High Dimensional Bayesian Mediation Analysis
Description:

Perform mediation analysis in the presence of high-dimensional mediators based on the potential outcome framework. Bayesian Mediation Analysis (BAMA), developed by Song et al (2019) <doi:10.1111/biom.13189> and Song et al (2020) <arXiv:2009.11409>, relies on two Bayesian sparse linear mixed models to simultaneously analyze a relatively large number of mediators for a continuous exposure and outcome assuming a small number of mediators are truly active. This sparsity assumption also allows the extension of univariate mediator analysis by casting the identification of active mediators as a variable selection problem and applying Bayesian methods with continuous shrinkage priors on the effects.

Total results: 1