_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-basics 2.18.0
Propagated dependencies: r-assertthat@0.2.1 r-biobase@2.66.0 r-biocgenerics@0.52.0 r-biocparallel@1.40.0 r-coda@0.19-4.1 r-cowplot@1.1.3 r-ggextra@0.10.1 r-ggplot2@3.5.1 r-hexbin@1.28.5 r-mass@7.3-61 r-matrix@1.7-1 r-matrixstats@1.4.1 r-posterior@1.6.0 r-rcpp@1.0.13-1 r-rcpparmadillo@14.0.2-1 r-reshape2@1.4.4 r-s4vectors@0.44.0 r-scran@1.34.0 r-scuttle@1.16.0 r-singlecellexperiment@1.28.1 r-summarizedexperiment@1.36.0 r-viridis@0.6.5
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://github.com/catavallejos/BASiCS
Licenses: GPL 3
Synopsis: Bayesian analysis of single-cell sequencing data
Description:

BASiCS is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori. BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells.

Total results: 4