_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-compound-cox 3.32
Propagated dependencies: r-survival@3.7-0 r-numderiv@2016.8-1.1 r-mass@7.3-61
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=compound.Cox
Licenses: GPL 2
Synopsis: Univariate Feature Selection and Compound Covariate for Predicting Survival, Including Copula-Based Analyses for Dependent Censoring
Description:

Univariate feature selection and compound covariate methods under the Cox model with high-dimensional features (e.g., gene expressions). Available are survival data for non-small-cell lung cancer patients with gene expressions (Chen et al 2007 New Engl J Med) <DOI:10.1056/NEJMoa060096>, statistical methods in Emura et al (2012 PLoS ONE) <DOI:10.1371/journal.pone.0047627>, Emura & Chen (2016 Stat Methods Med Res) <DOI:10.1177/0962280214533378>, and Emura et al (2019)<DOI:10.1016/j.cmpb.2018.10.020>. Algorithms for generating correlated gene expressions are also available. Estimation of survival functions via copula-graphic (CG) estimators is also implemented, which is useful for sensitivity analyses under dependent censoring (Yeh et al 2023 Biomedicines) <DOI:10.3390/biomedicines11030797> and factorial survival analyses (Emura et al 2024 Stat Methods Med Res) <DOI:10.1177/09622802231215805>.

Total results: 1