_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-cytometree 2.0.2
Propagated dependencies: r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-mclust@6.1.1 r-igraph@2.1.1 r-gofkernel@2.1-3 r-ggplot2@3.5.1 r-cowplot@1.1.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cytometree
Licenses: LGPL 3 FSDG-compatible
Synopsis: Automated Cytometry Gating and Annotation
Description:

Given the hypothesis of a bi-modal distribution of cells for each marker, the algorithm constructs a binary tree, the nodes of which are subpopulations of cells. At each node, observed cells and markers are modeled by both a family of normal distributions and a family of bi-modal normal mixture distributions. Splitting is done according to a normalized difference of AIC between the two families. Method is detailed in: Commenges, Alkhassim, Gottardo, Hejblum & Thiebaut (2018) <doi: 10.1002/cyto.a.23601>.

Total results: 1