r-deepregression 2.2.0
Propagated dependencies: r-torchvision@0.6.0 r-torch@0.14.2 r-tfruns@1.5.3 r-tfprobability@0.15.1 r-tensorflow@2.16.0 r-reticulate@1.42.0 r-r6@2.6.1 r-mgcv@1.9-3 r-matrix@1.7-3 r-magrittr@2.0.3 r-luz@0.4.0 r-keras@2.15.0 r-dplyr@1.1.4 r-coro@1.1.0
Channel: guix-cran
Licenses: GPL 3
Synopsis: Fitting Deep Distributional Regression
Description:
Allows for the specification of semi-structured deep distributional regression models which are fitted in a neural network as proposed by Ruegamer et al. (2023) <doi:10.18637/jss.v105.i02>. Predictors can be modeled using structured (penalized) linear effects, structured non-linear effects or using an unstructured deep network model.
Total results: 1