r-deepregression 2.3.2
Propagated dependencies: r-torchvision@0.8.0 r-torch@0.16.3 r-tfruns@1.5.4 r-tfprobability@0.15.2 r-tensorflow@2.20.0 r-reticulate@1.44.1 r-r6@2.6.1 r-mgcv@1.9-4 r-matrix@1.7-4 r-magrittr@2.0.4 r-luz@0.5.1 r-keras@2.16.0 r-dplyr@1.1.4 r-coro@1.1.0
Channel: guix-cran
Licenses: GPL 3
Synopsis: Fitting Deep Distributional Regression
Description:
Allows for the specification of semi-structured deep distributional regression models which are fitted in a neural network as proposed by Ruegamer et al. (2023) <doi:10.18637/jss.v105.i02>. Predictors can be modeled using structured (penalized) linear effects, structured non-linear effects or using an unstructured deep network model.
Total results: 1