_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-dineq 0.1.0
Propagated dependencies: r-hmisc@5.2-3 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=dineq
Licenses: GPL 3
Synopsis: Decomposition of (Income) Inequality
Description:

Decomposition of (income) inequality by population sub groups. For a decomposition on a single variable the mean log deviation can be used (see Mookherjee Shorrocks (1982) <DOI:10.2307/2232673>). For a decomposition on multiple variables a regression based technique can be used (see Fields (2003) <DOI:10.1016/s0147-9121(03)22001-x>). Recentered influence function regression for marginal effects of the (income or wealth) distribution (see Firpo et al. (2009) <DOI:10.3982/ECTA6822>). Some extensions to inequality functions to handle weights and/or missings.

Total results: 1