_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-dirichletprocess 0.4.2
Propagated dependencies: r-mvtnorm@1.3-2 r-gtools@3.9.5 r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://github.com/dm13450/dirichletprocess
Licenses: GPL 3
Synopsis: Build Dirichlet Process Objects for Bayesian Modelling
Description:

Perform nonparametric Bayesian analysis using Dirichlet processes without the need to program the inference algorithms. Utilise included pre-built models or specify custom models and allow the dirichletprocess package to handle the Markov chain Monte Carlo sampling. Our Dirichlet process objects can act as building blocks for a variety of statistical models including and not limited to: density estimation, clustering and prior distributions in hierarchical models. See Teh, Y. W. (2011) <https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf>, among many other sources.

Total results: 1