_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-doubleml 1.0.2
Propagated dependencies: r-readstata13@0.10.1 r-r6@2.5.1 r-mvtnorm@1.3-2 r-mlr3tuning@1.2.0 r-mlr3misc@0.15.1 r-mlr3learners@0.8.0 r-mlr3@0.21.1 r-data-table@1.16.2 r-clustergeneration@1.3.8 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://docs.doubleml.org/stable/index.html
Licenses: Expat
Synopsis: Double Machine Learning in R
Description:

Implementation of the double/debiased machine learning framework of Chernozhukov et al. (2018) <doi:10.1111/ectj.12097> for partially linear regression models, partially linear instrumental variable regression models, interactive regression models and interactive instrumental variable regression models. DoubleML allows estimation of the nuisance parts in these models by machine learning methods and computation of the Neyman orthogonal score functions. DoubleML is built on top of mlr3 and the mlr3 ecosystem. The object-oriented implementation of DoubleML based on the R6 package is very flexible. More information available in the publication in the Journal of Statistical Software: <doi:10.18637/jss.v108.i03>.

Total results: 1