_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-fastjm 1.5.3
Propagated dependencies: r-timeroc@0.4 r-survival@3.8-3 r-statmod@1.5.1 r-rlang@1.1.6 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-nlme@3.1-168 r-mass@7.3-65 r-magrittr@2.0.4 r-future-apply@1.20.0 r-future@1.68.0 r-dplyr@1.1.4 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=FastJM
Licenses: GPL 3+
Synopsis: Semi-Parametric Joint Modeling of Longitudinal and Survival Data
Description:

This package provides a joint model for large-scale, competing risks time-to-event data with singular or multiple longitudinal biomarkers, implemented with the efficient algorithms developed by Li and colleagues (2022) <doi:10.1155/2022/1362913> and <doi:10.48550/arXiv.2506.12741>. The time-to-event data is modelled using a (cause-specific) Cox proportional hazards regression model with time-fixed covariates. The longitudinal biomarkers are modelled using a linear mixed effects model. The association between the longitudinal submodel and the survival submodel is captured through shared random effects. It allows researchers to analyze large-scale data to model biomarker trajectories, estimate their effects on event outcomes, and dynamically predict future events from patientsâ past histories. A function for simulating survival and longitudinal data for multiple biomarkers is also included alongside built-in datasets.

Total results: 1