_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-forecasthybrid 5.0.19
Propagated dependencies: r-zoo@1.8-12 r-thief@0.3 r-purrr@1.0.2 r-ggplot2@3.5.1 r-forecast@8.23.0 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://gitlab.com/dashaub/forecastHybrid
Licenses: GPL 3
Synopsis: Convenient Functions for Ensemble Time Series Forecasts
Description:

Convenient functions for ensemble forecasts in R combining approaches from the forecast package. Forecasts generated from auto.arima(), ets(), thetaf(), nnetar(), stlm(), tbats(), and snaive() can be combined with equal weights, weights based on in-sample errors (introduced by Bates & Granger (1969) <doi:10.1057/jors.1969.103>), or cross-validated weights. Cross validation for time series data with user-supplied models and forecasting functions is also supported to evaluate model accuracy.

Total results: 1