_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-foreco 1.1.0
Propagated dependencies: r-osqp@0.6.3.3 r-matrix@1.7-3 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://github.com/danigiro/FoReco
Licenses: GPL 3
Synopsis: Forecast Reconciliation
Description:

Classical (bottom-up and top-down), optimal combination and heuristic point (Di Fonzo and Girolimetto, 2023 <doi:10.1016/j.ijforecast.2021.08.004>) and probabilistic (Girolimetto et al. 2024 <doi:10.1016/j.ijforecast.2023.10.003>) forecast reconciliation procedures for linearly constrained time series (e.g., hierarchical or grouped time series) in cross-sectional, temporal, or cross-temporal frameworks.

Total results: 2