_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-forestfit 2.4.3
Propagated dependencies: r-pracma@2.4.4 r-ars@0.8
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=ForestFit
Licenses: GPL 2+
Synopsis: Statistical Modelling for Plant Size Distributions
Description:

Developed for the following tasks. 1 ) Computing the probability density function, cumulative distribution function, random generation, and estimating the parameters of the eleven mixture models. 2 ) Point estimation of the parameters of two - parameter Weibull distribution using twelve methods and three - parameter Weibull distribution using nine methods. 3 ) The Bayesian inference for the three - parameter Weibull distribution. 4 ) Estimating parameters of the three - parameter Birnbaum - Saunders, generalized exponential, and Weibull distributions fitted to grouped data using three methods including approximated maximum likelihood, expectation maximization, and maximum likelihood. 5 ) Estimating the parameters of the gamma, log-normal, and Weibull mixture models fitted to the grouped data through the EM algorithm, 6 ) Estimating parameters of the nonlinear height curve fitted to the height - diameter observation, 7 ) Estimating parameters, computing probability density function, cumulative distribution function, and generating realizations from gamma shape mixture model introduced by Venturini et al. (2008) <doi:10.1214/07-AOAS156> , 8 ) The Bayesian inference, computing probability density function, cumulative distribution function, and generating realizations from univariate and bivariate Johnson SB distribution, 9 ) Robust multiple linear regression analysis when error term follows skewed t distribution, 10 ) Estimating parameters of a given distribution fitted to grouped data using method of maximum likelihood, and 11 ) Estimating parameters of the Johnson SB distribution through the Bayesian, method of moment, conditional maximum likelihood, and two - percentile method.

Total results: 1