_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-gemma2 0.1.3
Propagated dependencies: r-matrix@1.7-1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/fboehm/gemma2
Licenses: Expat
Synopsis: GEMMA Multivariate Linear Mixed Model
Description:

Fits a multivariate linear mixed effects model that uses a polygenic term, after Zhou & Stephens (2014) (<https://www.nature.com/articles/nmeth.2848>). Of particular interest is the estimation of variance components with restricted maximum likelihood (REML) methods. Genome-wide efficient mixed-model association (GEMMA), as implemented in the package gemma2', uses an expectation-maximization algorithm for variance components inference for use in quantitative trait locus studies.

Total results: 1