_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-get 1.0-7
Propagated dependencies: r-viridislite@0.4.2 r-gridextra@2.3 r-ggplot2@3.5.2 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/myllym/GET
Licenses: GPL 3
Synopsis: Global Envelopes
Description:

Implementation of global envelopes for a set of general d-dimensional vectors T in various applications. A 100(1-alpha)% global envelope is a band bounded by two vectors such that the probability that T falls outside this envelope in any of the d points is equal to alpha. Global means that the probability is controlled simultaneously for all the d elements of the vectors. The global envelopes can be used for graphical Monte Carlo and permutation tests where the test statistic is a multivariate vector or function (e.g. goodness-of-fit testing for point patterns and random sets, functional analysis of variance, functional general linear model, n-sample test of correspondence of distribution functions), for central regions of functional or multivariate data (e.g. outlier detection, functional boxplot) and for global confidence and prediction bands (e.g. confidence band in polynomial regression, Bayesian posterior prediction). See Myllymäki and MrkviÄ ka (2024) <doi:10.18637/jss.v111.i03>, Myllymäki et al. (2017) <doi:10.1111/rssb.12172>, MrkviÄ ka and Myllymäki (2023) <doi:10.1007/s11222-023-10275-7>, MrkviÄ ka et al. (2016) <doi:10.1016/j.spasta.2016.04.005>, MrkviÄ ka et al. (2017) <doi:10.1007/s11222-016-9683-9>, MrkviÄ ka et al. (2020) <doi:10.14736/kyb-2020-3-0432>, MrkviÄ ka et al. (2021) <doi:10.1007/s11009-019-09756-y>, Myllymäki et al. (2021) <doi:10.1016/j.spasta.2020.100436>, MrkviÄ ka et al. (2022) <doi:10.1002/sim.9236>, Dai et al. (2022) <doi:10.5772/intechopen.100124>, DvoŠák and MrkviÄ ka (2022) <doi:10.1007/s00180-021-01134-y>, MrkviÄ ka et al. (2023) <doi:10.48550/arXiv.2309.04746>, and Konstantinou et al. (2024) <doi: 10.1007/s00180-024-01569-z>.

Total results: 24