_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-gips 1.2.3
Propagated dependencies: r-rlang@1.1.6 r-permutations@1.1-6 r-numbers@0.9-2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/PrzeChoj/gips
Licenses: GPL 3+
Build system: r
Synopsis: Gaussian Model Invariant by Permutation Symmetry
Description:

Find the permutation symmetry group such that the covariance matrix of the given data is approximately invariant under it. Discovering such a permutation decreases the number of observations needed to fit a Gaussian model, which is of great use when it is smaller than the number of variables. Even if that is not the case, the covariance matrix found with gips approximates the actual covariance with less statistical error. The methods implemented in this package are described in Graczyk et al. (2022) <doi:10.1214/22-AOS2174>. Documentation about gips is provided via its website at <https://przechoj.github.io/gips/> and the paper by Chojecki, Morgen, KoÅ odziejek (2025, <doi:10.18637/jss.v112.i07>).

Total results: 1