_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-glmertree 0.2-6
Propagated dependencies: r-partykit@1.2-24 r-lme4@1.1-37 r-formula@1.2-5
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=glmertree
Licenses: GPL 2 GPL 3
Synopsis: Generalized Linear Mixed Model Trees
Description:

Recursive partitioning based on (generalized) linear mixed models (GLMMs) combining lmer()/glmer() from lme4 and lmtree()/glmtree() from partykit'. The fitting algorithm is described in more detail in Fokkema, Smits, Zeileis, Hothorn & Kelderman (2018; <DOI:10.3758/s13428-017-0971-x>). For detecting and modeling subgroups in growth curves with GLMM trees see Fokkema & Zeileis (2024; <DOI:10.3758/s13428-024-02389-1>).

Total results: 1