_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-greedyexperimentaldesign 1.6
Dependencies: openjdk@25
Propagated dependencies: r-stringr@1.6.0 r-stringi@1.8.7 r-rlist@0.4.6.2 r-rjava@1.0-11 r-rcpp@1.1.0 r-nbpmatching@1.5.6 r-kernlab@0.9-33 r-ggplot2@4.0.1 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/kapelner/GreedyExperimentalDesign
Licenses: GPL 3
Build system: r
Synopsis: Greedy Experimental Design Construction
Description:

Computes experimental designs for two-arm experiments with covariates using multiple methods, including: (0) complete randomization and randomization with forced-balance; (1) greedy optimization of a balance objective function via pairwise switching; (2) numerical optimization via gurobi'; (3) rerandomization; (4) Karp's method for one covariate; (5) exhaustive enumeration for small sample sizes; (6) binary pair matching using nbpMatching'; (7) binary pair matching plus method (1) to further optimize balance; (8) binary pair matching plus method (3) to further optimize balance; (9) Hadamard designs; and (10) simultaneous multiple kernels. For the greedy, rerandomization, and related methods, three objective functions are supported: Mahalanobis distance, standardized sums of absolute differences, and kernel distances via the kernlab library. This package is the result of a stream of research that can be found in Krieger, A. M., Azriel, D. A., and Kapelner, A. (2019). "Nearly Random Designs with Greatly Improved Balance." Biometrika 106(3), 695-701 <doi:10.1093/biomet/asz026>. Krieger, A. M., Azriel, D. A., and Kapelner, A. (2023). "Better experimental design by hybridizing binary matching with imbalance optimization." Canadian Journal of Statistics, 51(1), 275-292 <doi:10.1002/cjs.11685>.

Total results: 1