_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-gunifrac 1.8
Propagated dependencies: r-ape@5.8 r-dirmult@0.1.3-5 r-foreach@1.5.2 r-ggplot2@3.5.1 r-ggrepel@0.9.6 r-inline@0.3.20 r-mass@7.3-61 r-matrix@1.7-1 r-matrixstats@1.4.1 r-modeest@2.4.0 r-rcpp@1.0.13-1 r-rmutil@1.1.10 r-statmod@1.5.0 r-vegan@2.6-8
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://cran.r-project.org/package=GUniFrac
Licenses: GPL 3
Synopsis: Generalized UniFrac distances and methods for microbiome data analysis
Description:

This package provides a suite of methods for powerful and robust microbiome data analysis, including data normalization, data simulation, community-level association testing and differential abundance analysis. It implements generalized UniFrac distances, Geometric Mean of Pairwise Ratios (GMPR) normalization, semiparametric data simulator, distance-based statistical methods, and feature- based statistical methods. The distance-based statistical methods include three extensions of PERMANOVA:

  • PERMANOVA using the Freedman-Lane permutation scheme,

  • PERMANOVA omnibus test using multiple matrices, and

  • analytical approach to approximating PERMANOVA p-value.

Feature-based statistical methods include linear model-based methods for differential abundance analysis of zero-inflated high-dimensional compositional data.

Total results: 1