_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-gwqs 3.0.5
Propagated dependencies: r-rlist@0.4.6.2 r-reshape2@1.4.4 r-pscl@1.5.9 r-plotroc@2.3.1 r-nnet@7.3-19 r-matrix@1.7-1 r-mass@7.3-61 r-knitr@1.49 r-kableextra@1.4.0 r-ggrepel@0.9.6 r-ggplot2@3.5.1 r-future-apply@1.11.3 r-future@1.34.0 r-cowplot@1.1.3 r-car@3.1-3 r-broom@1.0.7 r-bookdown@0.41
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gWQS
Licenses: GPL 2+
Synopsis: Generalized Weighted Quantile Sum Regression
Description:

Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.

Total results: 1