_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-htgm 1.1
Propagated dependencies: r-minimalistgodb@1.0 r-gplots@3.2.0 r-gominer@1.0
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=HTGM
Licenses: GPL 2+
Synopsis: High Throughput 'GoMiner'
Description:

Two papers published in the early 2000's (Zeeberg, B.R., Feng, W., Wang, G. et al. (2003) <doi:10.1186/gb-2003-4-4-r28>) and (Zeeberg, B.R., Qin, H., Narashimhan, S., et al. (2005) <doi:10.1186/1471-2105-6-168>) implement GoMiner and High Throughput GoMiner ('HTGM') to map lists of genes to the Gene Ontology (GO) <https://geneontology.org>. Until recently, these were hosted on a server at The National Cancer Institute (NCI). In order to continue providing these services to the bio-medical community, I have developed stand-alone versions. The current package HTGM builds upon my recent package GoMiner'. The output of GoMiner is a heatmap showing the relationship of a single list of genes and the significant categories into which they map. High Throughput GoMiner ('HTGM') integrates the results of the individual GoMiner analyses. The output of HTGM is a heatmap showing the relationship of the significant categories derived from each gene list. The heatmap has only 2 axes, so the identity of the genes are unfortunately "integrated out of the equation." Because the graphic for the heatmap is implemented in Scalable Vector Graphics (SVG) technology, it is relatively easy to hyperlink each picture element to the relevant list of genes. By clicking on the desired picture element, the user can recover the "lost" genes.

Total results: 2