_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-hydropeak 0.1.2
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=hydropeak
Licenses: GPL 2
Synopsis: Detect and Characterize Sub-Daily Flow Fluctuations
Description:

An important environmental impact on running water ecosystems is caused by hydropeaking - the discontinuous release of turbine water because of peaks of energy demand. An event-based algorithm is implemented to detect flow fluctuations referring to increase events (IC) and decrease events (DC). For each event, a set of parameters related to the fluctuation intensity is calculated. The framework is introduced in Greimel et al. (2016) "A method to detect and characterize sub-daily flow fluctuations" <doi:10.1002/hyp.10773> and can be used to identify different fluctuation types according to the potential source: e.g., sub-daily flow fluctuations caused by hydropeaking, rainfall, or snow and glacier melt. This is a companion to the package hydroroute', which is used to detect and follow hydropower plant-specific hydropeaking waves at the sub-catchment scale and to describe how hydropeaking flow parameters change along the longitudinal flow path as proposed and validated in Greimel et al. (2022).

Total results: 1