_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-joinet 1.0.0
Propagated dependencies: r-palasso@1.0.0 r-glmnet@4.1-8 r-cornet@1.0.0
Channel: guix-cran
Location: guix-cran/packages/j.scm (guix-cran packages j)
Home page: https://github.com/rauschenberger/joinet
Licenses: GPL 3
Synopsis: Penalised Multivariate Regression ('Multi-Target Learning')
Description:

This package implements penalised multivariate regression (i.e., for multiple outcomes and many features) by stacked generalisation (<doi:10.1093/bioinformatics/btab576>). For positively correlated outcomes, a single multivariate regression is typically more predictive than multiple univariate regressions. Includes functions for model fitting, extracting coefficients, outcome prediction, and performance measurement. For optional comparisons, install remMap from GitHub (<https://github.com/cran/remMap>).

Total results: 1