_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-logcondens 2.1.8
Propagated dependencies: r-ks@1.14.3
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: http://www.kasparrufibach.ch
Licenses: GPL 2+
Synopsis: Estimate a Log-Concave Probability Density from Iid Observations
Description:

Given independent and identically distributed observations X(1), ..., X(n), compute the maximum likelihood estimator (MLE) of a density as well as a smoothed version of it under the assumption that the density is log-concave, see Rufibach (2007) and Duembgen and Rufibach (2009). The main function of the package is logConDens that allows computation of the log-concave MLE and its smoothed version. In addition, we provide functions to compute (1) the value of the density and distribution function estimates (MLE and smoothed) at a given point (2) the characterizing functions of the estimator, (3) to sample from the estimated distribution, (5) to compute a two-sample permutation test based on log-concave densities, (6) the ROC curve based on log-concave estimates within cases and controls, including confidence intervals for given values of false positive fractions (7) computation of a confidence interval for the value of the true density at a fixed point. Finally, three datasets that have been used to illustrate log-concave density estimation are made available.

Total results: 1