_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-metabma 0.6.9
Propagated dependencies: r-stanheaders@2.32.10 r-rstantools@2.4.0 r-rstan@2.32.6 r-rcppparallel@5.1.9 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.13-1 r-mvtnorm@1.3-2 r-logspline@2.1.22 r-laplacesdemon@16.1.6 r-coda@0.19-4.1 r-bridgesampling@1.1-2 r-bh@1.84.0-0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/danheck/metaBMA
Licenses: GPL 3
Synopsis: Bayesian Model Averaging for Random and Fixed Effects Meta-Analysis
Description:

Computes the posterior model probabilities for standard meta-analysis models (null model vs. alternative model assuming either fixed- or random-effects, respectively). These posterior probabilities are used to estimate the overall mean effect size as the weighted average of the mean effect size estimates of the random- and fixed-effect model as proposed by Gronau, Van Erp, Heck, Cesario, Jonas, & Wagenmakers (2017, <doi:10.1080/23743603.2017.1326760>). The user can define a wide range of non-informative or informative priors for the mean effect size and the heterogeneity coefficient. Moreover, using pre-compiled Stan models, meta-analysis with continuous and discrete moderators with Jeffreys-Zellner-Siow (JZS) priors can be fitted and tested. This allows to compute Bayes factors and perform Bayesian model averaging across random- and fixed-effects meta-analysis with and without moderators. For a primer on Bayesian model-averaged meta-analysis, see Gronau, Heck, Berkhout, Haaf, & Wagenmakers (2021, <doi:10.1177/25152459211031256>).

Total results: 1