_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-missforest 1.5
Propagated dependencies: r-dorng@1.8.6 r-foreach@1.5.2 r-iterators@1.0.14 r-itertools@0.1-3 r-randomforest@4.7-1.2
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/stekhoven/missForest
Licenses: GPL 2+
Synopsis: Nonparametric missing value imputation using Random Forest
Description:

The function missForest in this package is used to impute missing values, particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data, including complex interactions and non-linear relations. It yields an OOB imputation error estimate without the need of a test set or elaborate cross- validation. It can be run in parallel to save computation time.

Total results: 1