_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-missforestpredict 1.0.1
Propagated dependencies: r-ranger@0.17.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/sibipx/missForestPredict
Licenses: GPL 2+
Synopsis: Missing Value Imputation using Random Forest for Prediction Settings
Description:

Missing data imputation based on the missForest algorithm (Stekhoven, Daniel J (2012) <doi:10.1093/bioinformatics/btr597>) with adaptations for prediction settings. The function missForest() is used to impute a (training) dataset with missing values and to learn imputation models that can be later used for imputing new observations. The function missForestPredict() is used to impute one or multiple new observations (test set) using the models learned on the training data. For more details see Albu, E., Gao, S., Wynants, L., & Van Calster, B. (2024). missForestPredict--Missing data imputation for prediction settings <doi:10.48550/arXiv.2407.03379>.

Total results: 1