_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-mlr 2.19.2
Dependencies: gdal@3.8.2 geos@3.12.1 glu@9.0.2 gmp@6.3.0 gsl@2.8 jags@4.3.1 mpfr@4.2.1 openmpi@4.1.6 proj@9.3.1 udunits@2.2.28
Propagated dependencies: r-backports@1.5.0 r-bbmisc@1.13 r-checkmate@2.3.2 r-data-table@1.16.2 r-ggplot2@3.5.1 r-parallelmap@1.5.1 r-paramhelpers@1.14.1 r-stringi@1.8.4 r-survival@3.7-0 r-xml@3.99-0.17
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://mlr.mlr-org.com
Licenses: FreeBSD
Synopsis: Machine learning in R
Description:

This package provides an interface to a large number of classification and regression techniques. These techniques include machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Also included:

  • Generic resampling, including cross-validation, bootstrapping and subsampling;

  • Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems;

  • Filter and wrapper methods for feature selection;

  • Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling.

Most operations can be parallelized.

Page: 12
Total results: 35