_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-npbayesimputecat 0.5
Propagated dependencies: r-rlang@1.1.4 r-reshape2@1.4.4 r-rcpp@1.0.13-1 r-ggplot2@3.5.1 r-dplyr@1.1.4 r-bayesplot@1.11.1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=NPBayesImputeCat
Licenses: GPL 3+
Synopsis: Non-Parametric Bayesian Multiple Imputation for Categorical Data
Description:

These routines create multiple imputations of missing at random categorical data, and create multiply imputed synthesis of categorical data, with or without structural zeros. Imputations and syntheses are based on Dirichlet process mixtures of multinomial distributions, which is a non-parametric Bayesian modeling approach that allows for flexible joint modeling, described in Manrique-Vallier and Reiter (2014) <doi:10.1080/10618600.2013.844700>.

Total results: 1