_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-oem 2.0.12
Propagated dependencies: r-rspectra@0.16-2 r-rcppeigen@0.3.4.0.2 r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-matrix@1.7-1 r-foreach@1.5.2 r-bigmemory@4.6.4 r-bh@1.84.0-0
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://arxiv.org/abs/1801.09661
Licenses: GPL 2+
Synopsis: Orthogonalizing EM: Penalized Regression for Big Tall Data
Description:

Solves penalized least squares problems for big tall data using the orthogonalizing EM algorithm of Xiong et al. (2016) <doi:10.1080/00401706.2015.1054436>. The main fitting function is oem() and the functions cv.oem() and xval.oem() are for cross validation, the latter being an accelerated cross validation function for linear models. The big.oem() function allows for out of memory fitting. A description of the underlying methods and code interface is described in Huling and Chien (2022) <doi:10.18637/jss.v104.i06>.

Total results: 1