_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-orthodr 0.6.8
Propagated dependencies: r-survival@3.8-3 r-rgl@1.3.18 r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-pracma@2.4.4 r-plot3d@1.4.1 r-mass@7.3-65 r-dr@3.0.11
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://github.com/teazrq/orthoDr
Licenses: GPL 2+
Synopsis: Semi-Parametric Dimension Reduction Models Using Orthogonality Constrained Optimization
Description:

Utilize an orthogonality constrained optimization algorithm of Wen & Yin (2013) <DOI:10.1007/s10107-012-0584-1> to solve a variety of dimension reduction problems in the semiparametric framework, such as Ma & Zhu (2012) <DOI:10.1080/01621459.2011.646925>, Ma & Zhu (2013) <DOI:10.1214/12-AOS1072>, Sun, Zhu, Wang & Zeng (2019) <DOI:10.1093/biomet/asy064> and Zhou, Zhu & Zeng (2021) <DOI:10.1093/biomet/asaa087>. The package also implements some existing dimension reduction methods such as hMave by Xia, Zhang, & Xu (2010) <DOI:10.1198/jasa.2009.tm09372> and partial SAVE by Feng, Wen & Zhu (2013) <DOI:10.1080/01621459.2012.746065>. It also serves as a general purpose optimization solver for problems with orthogonality constraints, i.e., in Stiefel manifold. Parallel computing for approximating the gradient is enabled through OpenMP'.

Total results: 1