_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-otrimle 2.0
Propagated dependencies: r-robustbase@0.99-4-1 r-mvtnorm@1.3-3 r-mclust@6.1.1 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=otrimle
Licenses: GPL 2+
Synopsis: Robust Model-Based Clustering
Description:

This package performs robust cluster analysis allowing for outliers and noise that cannot be fitted by any cluster. The data are modelled by a mixture of Gaussian distributions and a noise component, which is an improper uniform distribution covering the whole Euclidean space. Parameters are estimated by (pseudo) maximum likelihood. This is fitted by a EM-type algorithm. See Coretto and Hennig (2016) <doi:10.1080/01621459.2015.1100996>, and Coretto and Hennig (2017) <https://jmlr.org/papers/v18/16-382.html>.

Total results: 1