_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-pathwaytmb 0.1.3
Propagated dependencies: r-survminer@0.5.0 r-survival@3.7-0 r-rcolorbrewer@1.1-3 r-randomforest@4.7-1.2 r-purrr@1.0.2 r-proc@1.18.5 r-maftools@2.22.0 r-glmnet@4.1-8 r-data-table@1.16.2 r-clusterprofiler@4.14.3 r-caret@6.0-94 r-biocgenerics@0.52.0
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=pathwayTMB
Licenses: GPL 2+
Synopsis: Pathway Based Tumor Mutational Burden
Description:

This package provides a systematic bioinformatics tool to develop a new pathway-based gene panel for tumor mutational burden (TMB) assessment (pathway-based tumor mutational burden, PTMB), using somatic mutations files in an efficient manner from either The Cancer Genome Atlas sources or any in-house studies as long as the data is in mutation annotation file (MAF) format. Besides, we develop a multiple machine learning method using the sample's PTMB profiles to identify cancer-specific dysfunction pathways, which can be a biomarker of prognostic and predictive for cancer immunotherapy.

Total results: 1