The pls package implements multivariate regression methods: Partial Least Squares Regression (PLSR), Principal Component Regression (PCR), and Canonical Powered Partial Least Squares (CPPLS). It supports:
several algorithms: the traditional orthogonal scores (NIPALS) PLS algorithm, kernel PLS, wide kernel PLS, Simpls, and PCR through
svd
multi-response models (or PLS2)
flexible cross-validation
Jackknife variance estimates of regression coefficients
extensive and flexible plots: scores, loadings, predictions, coefficients, (R)MSEP, R², and correlation loadings
formula interface, modelled after
lm()
, with methods for predict, print, summary, plot, update, etc.extraction functions for coefficients, scores, and loadings
MSEP, RMSEP, and R² estimates
multiplicative scatter correction (MSC)