_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-rforestry 0.11.1.0
Propagated dependencies: r-visnetwork@2.1.2 r-rcppthread@2.1.7 r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-onehot@0.1.1 r-glmnet@4.1-8
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://github.com/forestry-labs/Rforestry
Licenses: GPL 3+ FSDG-compatible
Synopsis: Random Forests, Linear Trees, and Gradient Boosting for Inference and Interpretability
Description:

This package provides fast implementations of Random Forests, Gradient Boosting, and Linear Random Forests, with an emphasis on inference and interpretability. Additionally contains methods for variable importance, out-of-bag prediction, regression monotonicity, and several methods for missing data imputation.

Total results: 1