_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-rnomni 1.0.1.2
Propagated dependencies: r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-plyr@1.8.9
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://cran.r-project.org/package=RNOmni
Licenses: GPL 3
Synopsis: Rank Normal Transformation Omnibus Test
Description:

Inverse normal transformation (INT) based genetic association testing. These tests are recommend for continuous traits with non-normally distributed residuals. INT-based tests robustly control the type I error in settings where standard linear regression does not, as when the residual distribution exhibits excess skew or kurtosis. Moreover, INT-based tests outperform standard linear regression in terms of power. These tests may be classified into two types. In direct INT (D-INT), the phenotype is itself transformed. In indirect INT (I-INT), phenotypic residuals are transformed. The omnibus test (O-INT) adaptively combines D-INT and I-INT into a single robust and statistically powerful approach. See McCaw ZR, Lane JM, Saxena R, Redline S, Lin X. "Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies" <doi:10.1111/biom.13214>.

Total results: 1