_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-scry 1.20.0
Propagated dependencies: r-biocsingular@1.24.0 r-delayedarray@0.34.1 r-glmpca@0.2.0 r-matrix@1.7-3 r-singlecellexperiment@1.30.1 r-summarizedexperiment@1.38.1
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://bioconductor.org/packages/scry.html
Licenses: Artistic License 2.0
Synopsis: Small-count analysis methods for high-dimensional data
Description:

Many modern biological datasets consist of small counts that are not well fit by standard linear-Gaussian methods such as principal component analysis. This package provides implementations of count-based feature selection and dimension reduction algorithms. These methods can be used to facilitate unsupervised analysis of any high-dimensional data such as single-cell RNA-seq.

Total results: 3