_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-sctenifoldnet 1.3
Propagated dependencies: r-rspectra@0.16-2 r-rhpcblasctl@0.23-42 r-pbapply@1.7-2 r-matrix@1.7-1 r-mass@7.3-61
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/cailab-tamu/scTenifoldNet
Licenses: GPL 2+
Synopsis: Construct and Compare scGRN from Single-Cell Transcriptomic Data
Description:

This package provides a workflow based on machine learning methods to construct and compare single-cell gene regulatory networks (scGRN) using single-cell RNA-seq (scRNA-seq) data collected from different conditions. Uses principal component regression, tensor decomposition, and manifold alignment, to accurately identify even subtly shifted gene expression programs. See <doi:10.1016/j.patter.2020.100139> for more details.

Total results: 1