_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-segclust2d 0.3.3
Propagated dependencies: r-zoo@1.8-14 r-scales@1.4.0 r-rlang@1.1.6 r-reshape2@1.4.4 r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-rcolorbrewer@1.1-3 r-plyr@1.8.9 r-magrittr@2.0.3 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/rpatin/segclust2d
Licenses: GPL 3
Synopsis: Bivariate Segmentation/Clustering Methods and Tools
Description:

This package provides two methods for segmentation and joint segmentation/clustering of bivariate time-series. Originally intended for ecological segmentation (home-range and behavioural modes) but easily applied on other series, the package also provides tools for analysing outputs from R packages moveHMM and marcher'. The segmentation method is a bivariate extension of Lavielle's method available in adehabitatLT (Lavielle, 1999 <doi:10.1016/S0304-4149(99)00023-X> and 2005 <doi:10.1016/j.sigpro.2005.01.012>). This method rely on dynamic programming for efficient segmentation. The segmentation/clustering method alternates steps of dynamic programming with an Expectation-Maximization algorithm. This is an extension of Picard et al (2007) <doi:10.1111/j.1541-0420.2006.00729.x> method (formerly available in cghseg package) to the bivariate case. The method is fully described in Patin et al (2018) <doi:10.1101/444794>.

Total results: 1