_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-semiartificial 2.4.1
Propagated dependencies: r-timedate@4041.110 r-statmatch@1.4.3 r-rsnns@0.4-17 r-robustbase@0.99-4-1 r-nnet@7.3-19 r-mcclust@1.0.1 r-mass@7.3-61 r-logspline@2.1.22 r-ks@1.14.3 r-fpc@2.2-13 r-flexclust@1.4-2 r-corelearn@1.57.3.1 r-cluster@2.1.6
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: http://lkm.fri.uni-lj.si/rmarko/software/
Licenses: GPL 3
Synopsis: Generator of Semi-Artificial Data
Description:

This package contains methods to generate and evaluate semi-artificial data sets. Based on a given data set different methods learn data properties using machine learning algorithms and generate new data with the same properties. The package currently includes the following data generators: i) a RBF network based generator using rbfDDA() from package RSNNS', ii) a Random Forest based generator for both classification and regression problems iii) a density forest based generator for unsupervised data Data evaluation support tools include: a) single attribute based statistical evaluation: mean, median, standard deviation, skewness, kurtosis, medcouple, L/RMC, KS test, Hellinger distance b) evaluation based on clustering using Adjusted Rand Index (ARI) and FM c) evaluation based on classification performance with various learning models, e.g., random forests.

Total results: 1