r-sfar 1.0.1
Channel: guix-cran
Home page: https://github.com/hdakpo/sfaR
Licenses: GPL 3+
Synopsis: Stochastic Frontier Analysis Routines
Description:
Maximum likelihood estimation for stochastic frontier analysis (SFA) of production (profit) and cost functions. The package includes the basic stochastic frontier for cross-sectional or pooled data with several distributions for the one-sided error term (i.e., Rayleigh, gamma, Weibull, lognormal, uniform, generalized exponential and truncated skewed Laplace), the latent class stochastic frontier model (LCM) as described in Dakpo et al. (2021) <doi:10.1111/1477-9552.12422>, for cross-sectional and pooled data, and the sample selection model as described in Greene (2010) <doi:10.1007/s11123-009-0159-1>, and applied in Dakpo et al. (2021) <doi:10.1111/agec.12683>. Several possibilities in terms of optimization algorithms are proposed.
Total results: 2