_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-sgdgmf 1.0.1
Propagated dependencies: r-viridislite@0.4.2 r-suppdists@1.1-9.9 r-rspectra@0.16-2 r-reshape2@1.4.5 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mass@7.3-65 r-ggpubr@0.6.2 r-ggplot2@4.0.1 r-generics@0.1.4 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/CristianCastiglione/sgdGMF
Licenses: Expat
Synopsis: Estimation of Generalized Matrix Factorization Models via Stochastic Gradient Descent
Description:

Efficient framework to estimate high-dimensional generalized matrix factorization models using penalized maximum likelihood under a dispersion exponential family specification. Either deterministic and stochastic methods are implemented for the numerical maximization. In particular, the package implements the stochastic gradient descent algorithm with a block-wise mini-batch strategy to speed up the computations and an efficient adaptive learning rate schedule to stabilize the convergence. All the theoretical details can be found in Castiglione et al. (2024, <doi:10.48550/arXiv.2412.20509>). Other methods considered for the optimization are the alternated iterative re-weighted least squares and the quasi-Newton method with diagonal approximation of the Fisher information matrix discussed in Kidzinski et al. (2022, <http://jmlr.org/papers/v23/20-1104.html>).

Total results: 1