_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-speck 1.0.0
Propagated dependencies: r-seurat@5.1.0 r-rsvd@1.0.5 r-matrix@1.7-1 r-magrittr@2.0.3 r-ckmeans-1d-dp@4.3.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SPECK
Licenses: GPL 2+
Synopsis: Receptor Abundance Estimation using Reduced Rank Reconstruction and Clustered Thresholding
Description:

Surface Protein abundance Estimation using CKmeans-based clustered thresholding ('SPECK') is an unsupervised learning-based method that performs receptor abundance estimation for single cell RNA-sequencing data based on reduced rank reconstruction (RRR) and a clustered thresholding mechanism. Seurat's normalization method is described in: Hao et al., (2021) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1016/j.cell.2019.05.031>, Butler et al., (2018) <doi:10.1038/nbt.4096> and Satija et al., (2015) <doi:10.1038/nbt.3192>. Method for the RRR is further detailed in: Erichson et al., (2019) <doi:10.18637/jss.v089.i11> and Halko et al., (2009) <arXiv:0909.4061>. Clustering method is outlined in: Song et al., (2020) <doi:10.1093/bioinformatics/btaa613> and Wang et al., (2011) <doi:10.32614/RJ-2011-015>.

Total results: 3