_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-stablegr 1.2
Propagated dependencies: r-mvtnorm@1.3-2 r-mcmcse@1.5-0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=stableGR
Licenses: GPL 3
Synopsis: Stable Gelman-Rubin Diagnostic for Markov Chain Monte Carlo
Description:

Practitioners of Bayesian statistics often use Markov chain Monte Carlo (MCMC) samplers to sample from a posterior distribution. This package determines whether the MCMC sample is large enough to yield reliable estimates of the target distribution. In particular, this calculates a Gelman-Rubin convergence diagnostic using stable and consistent estimators of Monte Carlo variance. Additionally, this uses the connection between an MCMC sample's effective sample size and the Gelman-Rubin diagnostic to produce a threshold for terminating MCMC simulation. Finally, this informs the user whether enough samples have been collected and (if necessary) estimates the number of samples needed for a desired level of accuracy. The theory underlying these methods can be found in "Revisiting the Gelman-Rubin Diagnostic" by Vats and Knudson (2018) <arXiv:1812:09384>.

Total results: 1