_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-stackimpute 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-sandwich@3.1-1 r-mice@3.17.0 r-mass@7.3-65 r-magrittr@2.0.3 r-dplyr@1.1.4 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=StackImpute
Licenses: GPL 2
Synopsis: Tools for Analysis of Stacked Multiple Imputations
Description:

This package provides methods for inference using stacked multiple imputations augmented with weights. The vignette provides example R code for implementation in general multiple imputation settings. For additional details about the estimation algorithm, we refer the reader to Beesley, Lauren J and Taylor, Jeremy M G (2020) â A stacked approach for chained equations multiple imputation incorporating the substantive modelâ <doi:10.1111/biom.13372>, and Beesley, Lauren J and Taylor, Jeremy M G (2021) â Accounting for not-at-random missingness through imputation stackingâ <arXiv:2101.07954>.

Total results: 1