_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-superpc 1.12
Propagated dependencies: r-survival@3.7-0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: http://www-stat.stanford.edu/~tibs/superpc
Licenses: GPL 3+ FSDG-compatible
Synopsis: Supervised Principal Components
Description:

Does prediction in the case of a censored survival outcome, or a regression outcome, using the "supervised principal component" approach. Superpc is especially useful for high-dimensional data when the number of features p dominates the number of samples n (p >> n paradigm), as generated, for instance, by high-throughput technologies.

Total results: 1