_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-tdastats 0.4.1
Propagated dependencies: r-rcpp@1.0.13-1 r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/rrrlw/TDAstats
Licenses: GPL 3
Synopsis: Pipeline for Topological Data Analysis
Description:

This package provides a comprehensive toolset for any useR conducting topological data analysis, specifically via the calculation of persistent homology in a Vietoris-Rips complex. The tools this package currently provides can be conveniently split into three main sections: (1) calculating persistent homology; (2) conducting statistical inference on persistent homology calculations; (3) visualizing persistent homology and statistical inference. The published form of TDAstats can be found in Wadhwa et al. (2018) <doi:10.21105/joss.00860>. For a general background on computing persistent homology for topological data analysis, see Otter et al. (2017) <doi:10.1140/epjds/s13688-017-0109-5>. To learn more about how the permutation test is used for nonparametric statistical inference in topological data analysis, read Robinson & Turner (2017) <doi:10.1007/s41468-017-0008-7>. To learn more about how TDAstats calculates persistent homology, you can visit the GitHub repository for Ripser, the software that works behind the scenes at <https://github.com/Ripser/ripser>. This package has been published as Wadhwa et al. (2018) <doi:10.21105/joss.00860>.

Total results: 1